General Certificate of Education
June 2009
Advanced Level Examination

MATHEMATICS

Unit Further Pure 2

Friday 5 June $2009 \quad 1.30 \mathrm{pm}$ to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 Given that $z=2 \mathrm{e}^{\frac{\pi \mathrm{i}}{12}}$ satisfies the equation

$$
z^{4}=a(1+\sqrt{3} \mathrm{i})
$$

where a is real:
(a) find the value of a;
(b) find the other three roots of this equation, giving your answers in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$.

2 (a) Given that

$$
\frac{1}{4 r^{2}-1}=\frac{A}{2 r-1}+\frac{B}{2 r+1}
$$

find the values of A and B.
(b) Use the method of differences to show that

$$
\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}=\frac{n}{2 n+1}
$$

(c) Find the least value of n for which $\sum_{r=1}^{n} \frac{1}{4 r^{2}-1}$ differs from 0.5 by less than 0.001 .

3 The cubic equation

$$
z^{3}+p z^{2}+25 z+q=0
$$

where p and q are real, has a root $\alpha=2-3 \mathrm{i}$.
(a) Write down another non-real root, β, of this equation.
(b) Find:
(i) the value of $\alpha \beta$;
(ii) the third root, γ, of the equation;
(iii) the values of p and q.

4 (a) Sketch the graph of $y=\tanh x$.
(b) Given that $u=\tanh x$, use the definitions of $\sinh x$ and $\cosh x$ in terms of e^{x} and e^{-x} to show that

$$
x=\frac{1}{2} \ln \left(\frac{1+u}{1-u}\right)
$$

(c) (i) Show that the equation

$$
3 \operatorname{sech}^{2} x+7 \tanh x=5
$$

can be written as

$$
3 \tanh ^{2} x-7 \tanh x+2=0
$$

(ii) Show that the equation

$$
3 \tanh ^{2} x-7 \tanh x+2=0
$$

has only one solution for x.
Find this solution in the form $\frac{1}{2} \ln a$, where a is an integer.

5 (a) Prove by induction that, if n is a positive integer,

$$
(\cos \theta+\mathrm{i} \sin \theta)^{n}=\cos n \theta+\mathrm{i} \sin n \theta
$$

(b) Hence, given that

$$
z=\cos \theta+\mathrm{i} \sin \theta
$$

show that

$$
\begin{equation*}
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \tag{3marks}
\end{equation*}
$$

(c) Given further that $z+\frac{1}{z}=\sqrt{2}$, find the value of

$$
z^{10}+\frac{1}{z^{10}}
$$

6 (a) Two points, A and B, on an Argand diagram are represented by the complex numbers $2+3 \mathrm{i}$ and $-4-5 \mathrm{i}$ respectively. Given that the points A and B are at the ends of a diameter of a circle C_{1}, express the equation of C_{1} in the form $\left|z-z_{0}\right|=k$.
(b) A second circle, C_{2}, is represented on the Argand diagram by the equation $|z-5+4 \mathrm{i}|=4$. Sketch on one Argand diagram both C_{1} and C_{2}.
(c) The points representing the complex numbers z_{1} and z_{2} lie on C_{1} and C_{2} respectively and are such that $\left|z_{1}-z_{2}\right|$ has its maximum value. Find this maximum value, giving your answer in the form $a+b \sqrt{5}$.
(5 marks)

7 The diagram shows a curve which starts from the point A with coordinates (0,2). The curve is such that, at every point P on the curve,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} s
$$

where s is the length of the arc $A P$.

(a) (i) Show that

$$
\begin{equation*}
\frac{\mathrm{d} s}{\mathrm{~d} x}=\frac{1}{2} \sqrt{4+s^{2}} \tag{3marks}
\end{equation*}
$$

(ii) Hence show that

$$
s=2 \sinh \frac{x}{2}
$$

(iii) Hence find the cartesian equation of the curve.
(b) Show that

$$
\begin{equation*}
y^{2}=4+s^{2} \tag{2marks}
\end{equation*}
$$

END OF QUESTIONS

